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ABSTRACT 

We show that not only completions of systems in various senses but also pro- 
jective covers in the category of compact Hausdorff spaces may be obtained 
as subquotients of enlargements. 

1. Introduction 

It is known that enlargements of models often contain as subquotients, ex- 

tensions of the models that are of importance classically. For  example, as in [73 , 

distributions may be regarded as equivalence classes of internal functions. As 

another example, in [53 and [6] completions of uniform spaces are studied from 

this point of view. We shall see that not only completions in the topological sense 

but also projective covers can be obtained from enlargements. 

For  background in non-standard analysis the reader is referred to [5], [63, or 

[7]. All enlargements considered will be higher order non-standard models. 

2. Survey of various examples 

We begin by rapidly surveying results which are essentially known. 

The Stone-~ech compactification of a completely regular space X may be 

obtained as follows: Let X* be an enlargement of X and let F be the class of 

bounded continuous functions on X. We define an equivalence relation on X*: 

x ~  y iff ~ = Of(y) for a l l f ~ F .  

Every f s  F induces a function f on the equivalence classes, namely, f (g )  = ~ 

Then X* with the weak topology induced by the f is the Stone-(~ech compacti- 

fication of  X. 
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The second conjugate space of a Banach space B can be obtained in an ana- 

logous manner. Let ?B = (x ~ B* :f(x)  is finite for a l l f e  B'). Let I = (x E B*: ~ 

= 0 for a l l f e  B'). Then ?B/I is the second conjugate space of B. 

Rings of quotients of rings of continuous functions can also be obtained in 

this manner. Let R(X) be the ring of real valued continuous functions on the 

compact Hausdorff space X. Then it is easily seen using the method of enlarge- 

ments that every (not necessarily continuous) function from X to R extends to a 

* continuous function from X* to R*. In particular, every continuous function 

on a dense open set of X into R can be extended to such a function. Hence by [1-], 

the ring of quotients of R(X) may be regarded as a subquotient of [R(X)]*. 

Similarly, using [4] we can deal with injective hulls of C* algebras. 

Although the situation looks different, the ring of quotients of the integers 7 

can also be obtained from an enlargement. In fact, if P is an infinite prime in J*, 

then J*/(P) is a field containing the rationals. 

Finally, we consider the case of Boolean algebras. Let B be an infinite Boolean 

algebra and B* an enlargement. For x e B* define U(x)= (y E B: y > x) and 

L(x) = (y ~ B: y < x). Define: x e V B if 

n ( y -  z) = 0  
y ~ O ( x )  
z ~ L ( x )  

where n is understood to be in B. 

Define I = (x e ~B: L(x) = {0}). Then ~B is a subalgebra of B*, I is an ideal in 

~,B and 7B/I is the completion of B. Several natural questions with respect to yB 

and I have interesting answers. First, I # {0). Secondly B* = 7B iff B is atomic. 

At the other extreme, if B is atomless, than (3x ~ B*) [U(x) = {1} and L(x) = {0}]. 

The details are expected to appear in the proceedings of a symposium on non- 

standard analysis held in Victoria in May 1972. 

3. Projective covers 

For background we refer the reader to [3]. The main example we consider is 

that of the projective cover P of a compact Hausdorff topological space X with 

enlargement X*. This differs from all previous examples because P is a cover 

rather than an extension; in fact, it is rare for P to contain a copy of X. In addition, 

since all points of X* are near-standard, it does not seem that X* has much new 

to offer. Yet, even here, P can be obtained as a subquotient of X*. The difference 

is that here the action will take place in X * - X  for most of the usual spaces. The 
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equivalence relation will thus be such that X * - X  will have new things to 

offer after all. 

We remind the reader that P is the Stone space of the Boolean algebra of 

regular open subsets of X. 

To avoid cluttering up notation in the sequel, we shall use the same symbol A 

for a subset of X and the corresponding subset of X*. The only possible danger 

of confusion is with respect to quantification since the other operations used 

commute with the correspondence. We therefore emphasize that all quanti- 

fication considered will be understood to be in X, e.g. when the phrase "for all 

open sets U"  is used, it will mean "for all sets of the form U* where U is open in 

X" .  (As is well known, this usually is not the same as "for all * open sets in X*".)  

THEOREM 3.1. The following conditions on a point x E X* are equivalent: 

1) x is not in the closure of two disjoint open sets 

2) The class of regular open sets containing x is an ultrafilter in the Boolean 

algebra oJ regular open sets. 

PROOF. ( 1 ) ~  (2). Since inclusion and intersection agree with the usual set 

theoretic meaning, the class containing x is always a filter. (It is worthwhile to 

note that this fails if regular closed sets are used.) Hence to prove (2) we need 

show only that for an arbitrary regular open set U, x ~ U or x ~ int (U'). Otherwise 

x E U' = int (U') and x ~ lint (U')] '  = U. Since U and int (U') are complementary 

sets, this contradicts (1). 

(2) :~ (1). Suppose U and V are disjoint open sets. Then ext(U) and ext.ext.U 

are regular open sets containing V and U respectively. Furthermore, ext.ext.U 

is the Boolean algebra complement of ext.U. Hence by (2), x~ext.(U) or 

x ~ ext.ext. (U), hence x ~ O or x r 7. This proves (1). Q.E.D. 

Note that, as the theorem is stated, it cannot be proved by transfer. However, 

by phrasing the theorem in terms of specific U and V, this can be done. The latter 

is a possible alternative in style for readers who prefer not to work directly in X*. 

Let yX be the set of all x satisfying either condition in Theorem 3.1. It is an 

easy exercise that X c ),X iff X is extremely disconnected. Another exercise of 

interest is that for metric spaces X n  7X consists of the isolated points of X. 

Hence any dense-in-itself metric space satisfies yX c X* - X. 

Let F(x) be the ultrafilter of regular open sets containing x. We now define an 

equivalence relation in 7X: x ~ y if F(x) = F(y). Let the quotient set be 6X. As 

usual, the class containing x is denoted by ~?. 
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Since X* is an enlargement of X, it follows by the usual method that every 

ultrafilter F has a non-empty intersection in X*. For  any point x in the inter- 

section, F = F(x). (From the point of  view of regular closed sets, there is even a 

unique point in X which is in the intersection. However, different ultrafilters may 

lead to the same point. In fact, this is the usual map P ~ X. By considering 

regular open sets and intersections in X*, distinct ultrafilters give rise to distinct 

equivalence classes of points. This is what will permit us to replace P by fX.)  

We use the one-one correspondence between f X  and P to obtain a topology on 

6X. Alternatively, the topology may be obtained as the quotient of the relative 

topology where the regular open sets are taken as a basis for the open sets of X*. 

The projective cover can then be regarded as the map 7X / ~ -% X which sends the 

equivalence class containing x into ~ This corresponds to the usual map P ~ X 

since ~ necessarily lies in the closure of each set in F(x). We now give a non- 

standard proof  that fiX ~ X is an essential cover. In more detail we have: 

THEOREM 3.2. The map 6X Z, X where e($)=~ is well-defined continuous 

and onto but is not onto when restricted to a proper closed subset of X. 

REMARK. We have no substitute for the known argument that f X - - P  is 

projective. 

NOTE. In contrast to our previous convention, we now prefer to use an asterisk 

to distinguish sets in X from corresponding sets in X*. This is because we are now 

dealing with both X* and X simultaneously. 

PROOF. Suppose ~ # Oy. Then there exist regular open sets U and V such 

that ~  OyeV and U n V = q ~ .  Then x ~ U *  and y ~V * .  Hence y ~ U * .  

Thus x ,~ y. This proves that the map is well-defined. 

Suppose e(~) = ~ and U is open such that ~ ~ U. Let ~ e 1 / c  17 c U where V 

is regular open. In addition x e V*. Now the quotient of V* is an open set in f X  

containing ~. Any point .~ such that y ~  V* satisfies e(fi)= Oy~ F'~ U. This 

proves continuity. 

Let x ~ X. The collection of regular open sets containing x is a filter (in the 

Boolean algebra sense) and is hence contained in an ultrafilter F. Let F = F(y). 

Then y is contained in U* for every open set U in F. Since every open set containing 

x includes a regular open set containing x by regularity, y is in the monad of  x. 

Hence e07) = x. 

For  the last part it suffices to consider complements of basis sets. Let U be a 
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non-empty regular open set. Then {:~: x 6 U*} is a typical set C of this kind. 

Now ~ ~ U ~ x ~ U*. Hence x 6 U* ~ e(~) 6 U. Thus 3(C) n U = ~Z)'. Q.E.D. 

We have thus seen that by a suitable representation of  the projective cover of  

X, the inverse image of a given point x consists of  equivalence classes in its monad;  

x will lie in one of the equivalence classes if and only if x ~ yX. 

We close with an important characterization of the points x ~ X which lie in 

yX. 

THEOREM 3.3. e- l (x )  consists of a sinale point if[ x ~ ~X. 

In this case e- l (x )  is precisely the single equivalence class consisting of the 

monad of x. 

PROOF. Suppose x ~ ~X. Since every point in the monad  of x is contained in 

U* for every open set containing x, it follows that every point y in the monad of x 

is contained in every set in F(x). Hence F(y) = F(x). Therefore y ~ ?X and all y 

in the monad of x are equivalent. Thus e -  I(x) consists of  a single point. 

Now suppose x ~ yX. Then the collection of regular open sets containing x can 

be extended in at least two ways to ultrafilters FI  and F2. Let F 1 = F(y) and 

F2 = F(z). Then p # ~ and e(p) = e(~) = x as is easily seen by the same argument  

that showed that e is onto. Q.E.D. 
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